Route choice modeling is a well-studied topic of research with implications, for example, for city planning and traffic equilibrium flow analysis. Due to the scale of effects these problems can have on communities, it is no surprise that diverse fields have attempted solutions to the same problem. The challenges, however, come with the size of networks themselves, as large cities may have tens of thousands of road segments connected by tens of thousands of intersections. Thus, the approaches discussed in this thesis will be focusing on the performance comparison between models from two different fields, econometrics and inverse reinforcement learning (IRL). First, we provide background on the topic to introduce researchers from one field to become acquainted with the other. Secondly, we describe the algorithms used with a common notation to facilitate this building of understanding between the fields. Lastly, we aim to compare the performance of the models on real-world datasets, namely covering bike route choices collected in a network of 42,000 links. We report our results for the two models from econometrics that we discuss, but were unable to generate the same results for the two IRL models. This was primarily due to numerical instabilities we encountered with the code we had modified to work with our data. We provide a discussion of these difficulties alongside the reporting of our results.