
NOAA Fisheries Steller Sea Lion
Population Count

Drew Kristensen
&

Patrick Ryan

Motivation
Problem: Steller sea lions in the western Aleutian Islands have declined 94
percent in the last 30 years. Only way to collect accurate data on sea lion
population is to take aerial photos. To save the population scientists need to track
and have accurate numbers on the total population. But this can take scientist
months to count all the sea lions in the thousands of photos they need to go
through.

Solution: A neural network algorithm could be used that could count the seal
lions in the photos saving time for scientists so they can focus on saving the sea
lion population. DO IT FOR THE BABY SEALS!!!

Technical Problem
Enumerate all sea lions present in an image taken from above

● Identify which portions of the image contained sea lions
● Find a method to pass over the image to be ensure we would detect a sea

lion in an image
● Minimize the amount of background that our network detected as a sea lion
● Kaggle testing input is 96.5 GB...zipped... (FYI that is big)

How we did it
● Made a neural network of sequential layers. Three convolutional layers each

followed by a pooling layer. Into 2 neural layers, first 256 neurons, the second
128 neurons. Resulting in one final output layer. Each feeds sequentially into
the next

● Filtered the image in 64 by 64 pixel ranges, shift the window by 48 pixels over
to ensure we don't miss any seals. Found this to the best size that was fast
but still gave use accurate data.

● Had to set up computers in Thompson to train the input.

Input Convo Pooling X3 Neural

0

.

.

.

255

Neural

0

.

.

.

127

Output

Training
● Training turned out to be one of our biggest challenges. (surprise!)
● Full data input was to big to run on the computer we set up in a reasonable

time.

Future solutions:

● Set up dedicated training computer days in advance.
● Switch to running on GPU instead of CPU

○ CNN have been shown to run much faster on GPU’s
○ Keras can be implemented to run on GPU

Making the Choice
Chose because CNNs have been shown to demonstrate low error on image
classification problems

● Highly recommended for image recognition and classification due to how convolution, ReLu
(non-linearity) and pooling layers work.

Easy(ish) to implement using python frameworks

● Keras
● Theano (Backend)
● A lot of good documentation online

Results
Kaggle provided two data sets, a large and small. Had to use smaller data set to
measure our CNN due to time constraints. Large data set would have hopefully
given better results.

Test Set:

● Achieved 91% accuracy.
● Our goal was 90%

Small Official Dataset:

● Precision: 80%
● Accuracy: 50%

