The Intersection of Reinforcement Learning and Traffic Light Scheduling
Q learning with a target network and experience replay applied to traffic light controllers

Drew Kristensen
University of Puget Sound
dkristensen @pugetsound.edu

Abstract

The goal of this project is to create a policy learner to
optimize the traffic flow in a non-virtual city environ-
ment. However, in order to accomplish this task, we
will be using model based reinforcement learning ap-
proaches to tackle the end goal. By first training the ar-
chitecture on an easily testable and repeatable environ-
ment, we can develop a model that will complete this
task quicker and easier than one reliant on real world
training data. One key feature in this project is keep-
ing the inputs simple enough that they would be readily
available in real life applications - that is to say the fea-
tures used as inputs should be easy to observe.

Introduction

Traffic congestion is a problem that most people in urban
environments have experienced at some point in their lives.
Congestion not only has an impact on the humans involved
in the traffic jam, but the idling vehicles emitting carbon
cause environmental harm. It is estimated that in 2013, the
annual time wasted in cities due to congested traffic was
around 65 hours per driver, and the amount of carbon diox-
ide released while delayed was approximately 3.1 megatons
per major city [CEBR2014]. The factors responsible for this
traffic congestion can be attributed to a few sources, namely
the increase in the number of vehicles on the road, inade-
quate infrastructure, and inefficient current intersection con-
trols. To alleviate congestion, at least one of the above rea-
sons must be addressed. Since construction of new infras-
tructure in urban environments is costly, and since cars will
continue to be driven, the most realistic solution involves
utilizing a smarter traffic controller.

The most basic traffic controllers use fixed time signal
control, where the timings of the lights can be fitted to data in
order to optimize throughput. The problem with fixed timing
controls is that it cannot react to real-world changes in traffic
throughput, and can lead to congestion and gridlock in urban
environments. Currently, an effective solution to reducing
vehicular congestion is using adaptive traffic signal control,
where the timings on light signals are changed according to
real world data that the traffic control agent (TCA) can col-

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

lect. Current examples of these include SCOOT and TRAN-
SYT [Robertson and Bretherton1991, Robertson1969] and
prove to be much more effective than their static equivalent.

Reinforcement learning techniques have seen recent use
in an attempt to develop better controllers than their fixed
timing counterparts. In many of these, human crafted fea-
tures are used, such as queue length and vehicle speed [Gre-
goire et al.2013, Arel et al.2010, Abdoos, Mozayani, and
Bazzan2013], while others use machine crafted features by
feeding in the entire state space consisting of vehicle posi-
tions and speeds [Gao et al.2017, Genders and Razavi2016,
Wiering2000, Balaji, German, and Srinivasan2010]. In this
paper, we propose using a deep Q network (DQN) with a
target network [Mnih et al.2015, van Hasselt, Guez, and Sil-
ver2015] as our traffic controller over the state space in order
to minimize the total squared waiting time for every car in
the network. Not only do we implement a novel state space
for this problem, with less knowledge required from the en-
vironment, but we also utilize an unexplored action space
in order to give our traffic control agent the most freedom
possible.

The paper will be composed as follows; section 2 will
address previous research in the area and how it applies to
this paper, section 3 will describe the proposed system, and
section 4 discusses the significance of the results.

Related Work

Reinforcement learning applied to traffic control is not a
novel idea, but there has been a wide variety in the ap-
proaches that have been used. Early approaches utilized
small scale examples, but showed the RL can be applied
to the TCA problem successfully [Wiering2000, Thorpe and
Anderson1996, Brockfeld et al.2001]. Since then, increases
in computational power, better reinforcement learning tech-
niques, and the increase in popularity of neural networks
have all driven novel research into this field. Previous works
have explored a variety of state spaces, action spaces, re-
ward functions, traffic simulators, network layout, and vehi-
cle flow, which have provided a deep foundation for the field.
Previous approaches have used many different state spaces,
such as locations of cars in lanes, the number of queued
vehicles, or the density of traffic in a lane [Genders and
Razavi2016, Gao et al.2017, Wiering2000, LA and Bhatna-
gar2011] as well as a variety of action spaces and approaches

[Kwong et al.2011, Abdulhai, Pringle, and Karakoulas2003].
Examples in previous works include state spaces like the
DTSE encoding developed by Genders, which segments
streets into blocks and encodes positions of cars on the street
and their speeds relative to the speed limit, or more general
state spaces which encompass the full network and locations
of cars in segments of roads, as used in the work done by
Wiering.

On the topic of previous research, there are several key
notions which we would like to examine.

First off, the state space utilized by many of the previ-
ous research projects involved total knowledge of the ve-
hicles in the state. That is, they take their position on the
edge as well as their speed. Examples include state spaces
like the encoding developed by Genders, which segments
streets into blocks and encodes positions of cars on the street
and their speeds relative to the speed limit, or more general
state spaces which encompass the full network and locations
of cars in segments of roads, as used in the work done by
Weiring. The most in depth exploration of constructing the
state space in any real world scenario comes from work done
in [Thorpe and Anderson1996]. While this encoding leads
to a information dense state sapce useful for optimization,
the real world examples of this would seem rather difficult
to implement. It is from this, that we argue for a reduced
information state space, where we keep data we feel is nece-
sary, such as the quantities of vehicles in lanes and the num-
ber of queued vehicles, but throw out data we feel can be
done without, such as exact speeds and positions. This will
be discussed further in Section 2.2. This takes the middle
ground of the early research, done by utilizing restricted
state spaces, and recent works, which use too free a state
space.

Second, a goal that some recent works have argued for
is maximal freedom for the TCA in terms of action space
[Wiering2000, Genders and Razavi2016]. In attempts to
keep this, many approaches have been utilized that give the
TCA more control than a standard fixed timing controller.
Even in restricted action spaces where mandatory sequences
must be followed, such a a yellow phase following a green
phase, there has been good work done in allowing fluid
choice for the TCA. However, all of these do serve as re-
strictions of the possible action space, and the optimal policy
may not follow these rules. Thusly, we attempt to provide
our agent with close to the maximal degree of autonomy, al-
lowing it to change the signals as it pleases, with the only
restriction being the breadth of traffic phases it can choose
from.

Proposed System
Action Space

For any pair of incoming roads for a traffic light, we assume
that there are 4 different signals that the traffic light can use;
green straight, yellow straight, green left, yellow left. For
any other pair of intersections, if any of the four mentioned
are in use, then they will have red signals. From our previous
assumption that there does not exist any intersection with
more than 6 incoming roads, we can take our action space to

be 3 sets of this pattern, so that |A(S)| = 12. From this, we
can generalize our network to incorporate not only intersec-
tions with 4 incoming edges, but any intersection with 3 to
6 incoming roads.

In most cases, such as for any intersection with less than
6 incoming streets, there will be less than 12 actions to take.
In these cases, we can still use the action space, but train it
to never choose the actions it cannot take by subtracting a
penalty value from the reward for a given action. For train-
ing, we can say that any output higher is clipped at whatever
the maximum action value is. We can represent choosing
an action by outputting an arg max over the vector given by
each light.

Another important aspect of the action space is that there
is no duration included in the action decision. The implica-
tions of this is that at each time step, the network makes a
decision based on the state space. This freedom in an action
space has yet to be explored.

State Space

Previous state spaces rely on collecting data regarding pre-
cise locations of vehicles within their lanes and their speeds
[Genders and Razavi2016]. While these provide a rich state
space from which we can easily optimize, collecting these
data points in the real world is a challenge. Instead, we pro-
pose a new state space which relies on the proportion of ve-
hicles in each lane as well as the proportion of vehicles in
each lane going under a speed threshold at each traffic light.
Using this, our inputs stay between 0 and 1, and similarly
scaled situations should have similar outcomes. Thusly, if
there are ten cars on each lane in a network, it should theo-
retically take the same action as having one car in each lane.
We categorize each lane into one of five types, dedicated
left, left and straight, straight, right and straight, and dedi-
cated right. Using this, we can capture any intersection with
an arbitrary number of lanes, since for a road with two or
more of any one type, we return their sum as their combined
value.

How we define each of these directions within the prob-
lem is important, since obviously, for a 5 way intersection,
there will intuitively be two right turns and two left turns,
but no straight. Therefore, we define straight as within one
eighths pi radians away from the direction the incoming
street had if extended through the intersection. Using this,
we hope to have a generalized layout for the state space such
that it can represent any intersection. The pseudocode for
this algorithm can be found in Algorithm 2 on page 6 and an
example can be seen in figure 1.

Reward

In reinforcement learning, the reward function is what
guides the agent during the algorithm, so it is important to
choose a reward that will lead the agent in the direction that
we want. We can easily replace a reward function, which
ideally minimizes its value, with a cost function, which ide-
ally minimizes its value, by negating the cost value. This al-
lows us to maximize the negative of the cost, which is equiv-
alent to minimizing. As in work done by Brys et. al [Brys,
Pham, and Taylor2014], we propose using squared vehicle

Figure 1: Example of lane classes within an intersection

delay as our cost. Our reasoning behind this decision is as
follows; for a lone vehicle attempting to cross a busy street,
the network with linear rewards will not be incentivised to
allow them through at the cost of the vehicles on the busy
street for a long time. Under the squared implementation,
the network will be forced to let the vehicle through much
faster, and thus preserve some individual happiness at a min-
imal cost to the vehicles needing to stop for a brief time.

RL Agent

For the agent, we utilize a convolutional neural network
(CNN) [Lecun et al.1998, Redmon et al.2015] in order to
make use of our state space in a logical and human-intuition
backed manner. We argue that a CNN works better than a
feed forward artificial neural network, as it is better suited
for the task of pattern recognition. This can be seen in the
success of CNNs in the field of image recognition and seg-
mentation. Using this, we hope to better be able to pick out
patterns in our traffic data, even with the more limited state
space which we have proposed in this research. The archi-
tecture of our DQN can be seen in figure 2. We have two
convolutional layers, which convolve over first the lane data
for each incoming road in the junction, then secondly con-
volve over all of the outputs of the first layer, representing a
convolution over the patterns extracted from each lane, giv-
ing us an output the operates over the entire state space in the
junction. We also preform a convolution over our the inputs
corresponding to our current traffic signal. Again, the intu-
ition behind this decision is that this allows our network to
pick out patterns with the light phases as well. The outputs
from the convolutions are the combined in a flatten layer,
which is then fed into two hidden layers with linear rectifier
activation functions and one output layer.

Q Learning

We implement the Q learning algorithm with a target net-
work and experience replay [Watkins and Dayan1992, Mnih
et al.2015, Heess et al.2017]. Q learning is the process of
training an approximator to mimic a Q function, where the
Q function represents

Q(Stvatvﬂ-) =F {Z ’YkTHk 5t7at77T}

k=0

1 11

Flatten

Figure 2: Architecture of the DQN

for a given state (s;) and action (a;), taken under some pol-
icy 7. That is, the Q function outputs the expected value of
all rewards from the current action and state onwards. The
discount factor, +, is a value between 0 and 1, and is used
to weight the actions taken now and in the near future more
heavily than the rewards from actions take in the distant fu-
ture. By operating on the rewards, we can choose an action
at time ¢ with

a; = arg max Q(s¢, a,)
a

. The goal of Q learning is to find some policy 7* such that
7 = argmax, Q(s,a,7), forall s € S;a € A.

We train towards this policy by the iterative value update
defined by setting

Q(Sta ag, 0) —re+ meai{ Q(St-‘rl) a, 6/)

Where 6 is the parameters for our primary DQN, and 6’
holds the parameters for our target network. We use this
implementation as it has been shown to better handle over-
estimates that single network Q learning is so susceptible
to [van Hasselt, Guez, and Silver2015]. In order to update
the target network, the approach that we use is Polyak av-
eraging, as it is a simple and effective method for this task.
This means that for some given A, such that 0 < A\ < 1, we
perform the following assignment after each training itera-
tion:

0 =0+ (1—).

The algorithm for training the network is given in Algo-
rithm 1.

Algorithm 1: Q learning using a target network and ex-
perience replay

1 Initialize DQN with random weights 6;

2 Initialize Target DQN with random weights 6’;
3 Initialize €, v, 8, N, M, X,

4 Initialize replay buffer, B;

5 for episode < 1 to N do
6
7
8
9

for t + 0 to 4800 do
S; <—observed state;
With probability e
At < argmax, Q(St7 a, 9)5

10 Else
u Ay + random([1..12]);
12 Simulate time step;
13 Si+1 < new observed state;
14 1 < reward from Ay;
15 Insert (S, A¢, 7t, St+1) into B;
16 minibatch < sample(B, 32);
17 X < inputs from minibatch;
18 Y + targets from minibatch;
19 Update € through RMSProp on training data;
20 0 — X0+ (1 —N)6;
21 end for

22 end for

In most cases, such as for any intersection with less than 6
incoming streets, there will be less than 12 possible actions
for the traffic light to take. In these cases, we can still use
our action space, but train the network to never choose the
actions it cannot take. During training, we severely penalize
any output higher maximum action value is, and retain the
action currently in place. We can represent choosing an ac-
tion by outputting an arg max over the vector given by each
light.

Results
Agent Settings

We implemented our DQN in TensorFlow 1.8 and we used
the SUMO environment for our traffic simulator. We trained
the agent for N = 4000 episodes and within each episode, we
simulate one hour of traffic. Within our DQN, we used the
default ADAM optimizer in TensorFlow, with the singular
change being that we set & = 0.00025. Our discount factor
was 0.95 and our experience replay buffer has the capacity
to store 500,000 steps. For our epsilon-greedy policy, we
decrease epsilon linearly from 1 to 0.1 over 2.5 million time
steps. We took our Polyak averaging constant to be A =
0.999. The training was done a 3.5 GHz Apple Macbook
Pro.

Results

Due to difficulties in implementing the Q learning algorithm,
we did not have sufficient time to test our network in a capac-
ity that we are happy with. Due to time constraints, instead
of being able to train on the 4 way, 4 lane intersection that
is so heavily researched, we were forced to train on a 4 way,
1 lane intersection in its stead. However, from less than one

night of running, we achieved a throughput over 1000 simu-
lated seconds of 115 vehicles, compared to the fixed timing
141 in the same time. However, during that same run, the
average delay for arrived vehicles was 119 seconds for our
network compared to the 19 seconds for the default fixed
timing system. This represents an awful performance by our
network, even relative to the most simple algorithm for traf-
fic signal control. While disappointing, we hope to train the
network more in the near future, in order to fully explore
the extent to which our state space and architecture can be
successful in operating as a TCA relative to other RL ap-
proaches.

Conclusion

Since the algorithm only operated successfully with such
limited time, our network achieved significantly worse re-
sults than any other available algorithms for traffic controller
agents. It is because of this that we feel like this research
proved unsuccessful, at least with the parameters and set-
tings that we used in our implementations. It might be worth
changing these, as our state space is more actionable than
previous state spaces, and thus may still have value for fu-
ture works.

Future Work

In the future, we would like to explore the success of the
novel state space and architecture, as mentioned in section
22. Furthermore, if this approach does seem to have merit,
then exploring a variety of intersections, such as 6 way inter-
sections, in order to better showcase the state space as well
as provide a baseline for these types of intersections in the
field. Lastly, testing the network on multiple intersections in
the same network would be important, as this is more similar
to real life scenarios and would allow us to compare our re-
search to more algorithms that are present in previous works.

Acknowledgements

I would like to thank Dr. America Chambers, for her as-
sistance and encouragement throughout the length of this
project. I would also like to thank the authors of the vari-
ous frameworks used to actualize my goals.

References

Abdoos, M.; Mozayani, N.; and Bazzan, A. L. C. 2013.
Holonic multi-agent system for traffic signals control. Eng.
Appl. Artif. Intell. 26(5-6):1575-1587.

Abdulhai, B.; Pringle, R.; and Karakoulas, G. 2003. Re-
inforcement learning for true adaptive traffic signal control.
129.

Arel, 1.; Liu, C.; Urbanik, T.; and Kohls, A. G. 2010.
Reinforcement learning-based multi-agent system for net-
work traffic signal control. IET Intelligent Transport Sys-
tems 4(2):128-135.

Balaji, P. G.; German, X.; and Srinivasan, D. 2010. Urban

traffic signal control using reinforcement learning agents.
IET Intelligent Transport Systems 4(3):177-188.

Brockfeld, E.; Barlovic, R.; Schadschneider, A.; and
Schreckenberg, M. 2001. Optimizing traffic lights in a cel-
lular automaton for city traffic. 64:056132.

Brys, T.; Pham, T. T.; and Taylor, M. E. 2014. Distributed
learning and multi-objectivity in traffic light control. Con-
nection Science 26(1):65-83.

CEBR. 2014. The future economic and environmental costs
of gridlock in 2030. Technical report, INRIX.

Gao, J.; Shen, Y.; Liu, J.; Ito, M.; and Shiratori, N. 2017.
Adaptive traffic signal control: Deep reinforcement learning
algorithm with experience replay and target network. CoRR
abs/1705.02755.

Genders, W., and Razavi, S. 2016. Using a deep rein-
forcement learning agent for traffic signal control. CoRR
abs/1611.01142.

Gregoire, J.; Frazzoli, E.; de La Fortelle, A.; and Wong-
piromsarn, T. 2013. Capacity-aware back-pressure traffic
signal control. CoRR abs/1309.6484.

Heess, N.; TB, D.; Sriram, S.; Lemmon, J.; Merel, J.;
Wayne, G.; Tassa, Y.; Erez, T., Wang, Z.; Eslami, S.
M. A.; Riedmiller, M. A.; and Silver, D. 2017. Emer-
gence of locomotion behaviours in rich environments. CoRR
abs/1707.02286.

Kwong, Y.; Bolong, N.; Kiring, A.; Yang, S.; Tze, K.; and
Teo, K. 2011. Q-learning based traffic optimization in man-
agement of signal timing plan. 12.

LA, P, and Bhatnagar, S. 2011. Reinforcement learn-
ing with function approximation for traffic signal control.

IEEE Transactions on Intelligent Transportation Systems
12(2):412-421.

Lecun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
86:2278 — 2324.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,
A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518:529 EP —.

Redmon, J.; Divvala, S. K.; Girshick, R. B.; and Farhadi,
A. 2015. You only look once: Unified, real-time object
detection. CoRR abs/1506.02640.

Robertson, D. 1., and Bretherton, R. D. 1991. Optimiz-
ing networks of traffic signals in real time-the scoot method.
IEEFE Transactions on Vehicular Technology 40:11-15.
Robertson, D. I. 1969. ’transyt’ method for area traffic con-
trol. Traffic Engineering Control 10:271-281.

Thorpe, T. L., and Anderson, C. W. 1996. Traffic light con-
trol using sarsa with three state representations. Technical
report, IBM Corporation.

van Hasselt, H.; Guez, A.; and Silver, D. 2015. Deep

reinforcement learning with double g-learning. CoRR
abs/1509.06461.

Watkins, C., and Dayan, P. 1992. Technical note: Q-
learning. 8:279-292.

Wiering, M. 2000. Multi-agent reinforcement learning for
traffic light control. In Proceedings of the Seventeenth Inter-
national Conference on Machine Learning, 1151-1158.

Appendix

Algorithm 2: Calculate the class of the lane

1 Function GetLaneType(Lane)

e e N N R W

e e
B W N =D

Input : The lane we want to compute the lane
class for
Output: The index of the lane with a value between
0 and 4 inclusive
left, straight, right < 0,0,0;
for outbound lane connected to Lane do
if outbound lane is straight ahead then
| straight < 1;
else if outbound lane is a right turn then
| right < 1;
else
| left « 1;
end if
end for
sum <— 0 (left) + 2 (straight) + 4 (right);
number < (left + straight + right);
return sum/number;

