
Exploring the effects of different reward functions on the
TSCA learning process

Drew Kristensen
McGill ID: 260923149

April 26, 2019

Abstract

While there has been extensive research into
the applications of reinforcement learning
with controlling a traffic signal control agent
(TSCA), there has been little comparison be-
tween the reward functions used by differ-
ent approaches. In this paper, we explore
6 different reward functions, each measured
once with the current time step, and once as
a difference with the previous time step, all
standardized by using the same model, action
space, and state space.

1 Introduction

Traffic congestion is a problem that most peo-
ple in urban environments have experienced
at some point in their lives. Congestion not
only has an impact on the humans involved in
the traffic jam, but the idling vehicles emit-
ting carbon cause environmental harm. It
is estimated that in 2013, the annual time
wasted in cities due to congested traffic was
around 65 hours per driver, and the amount
of carbon dioxide released while delayed was
approximately 3.1 megatons per major city
[2]. The factors responsible for this traffic
congestion can be attributed to a few sources,
namely the increase in the number of vehi-
cles on the road, inadequate infrastructure,

and inefficient current intersection controls.
To alleviate congestion, at least one of the
above reasons must be addressed. Since con-
struction of new infrastructure in urban en-
vironments is costly, and since cars will con-
tinue to be driven, the most realistic solu-
tion involves utilizing a smarter traffic con-
troller. The most basic traffic controllers use
fixed time signal control, where the timings
of the lights can be fitted to data in order
to optimize throughput. The problem with
fixed timing controls is that it cannot react
to real-world changes in traffic throughput,
and can lead to congestion and gridlock in
urban environments. Currently, an effective
solution to reducing vehicular congestion is
using adaptive traffic signal control, where
the timings on light signals are changed ac-
cording to real world data that the traffic sig-
nal control agent (TSCA) can collect. Cur-
rent examples of these include SCOOT and
TRANSYT [9] and prove to be much more ef-
fective than their static equivalent, however,
the extensive work into reinforcement learn-
ing (RL) applications to TSCAs have shown
great prospect, and large reductions in delays
compared to these improved dynamic signals.
We implement the Q learning algorithm with
experience replay [11, 8, 6]. Q learning is the
process of training an approximator to esti-
mate a Q function, where the Q function rep-
resents

Q(st, at, π) = E

{
∞∑
k=0

γkrt+k

∣∣∣∣∣st, at, π
}

1

3 METHOD

for a given state (st) and action (at), taken
under some policy π. That is, the Q func-
tion outputs the expected value of all rewards
from the current action and state onwards.
The discount factor, γ, is a value between 0
and 1, and is used to weight the actions taken
now and in the near future more heavily than
the rewards from actions take in the distant
future. By operating on the rewards, we can
choose an action at time t with

at = arg max
a

Q(st, a, π)

. The goal of Q learning is to find some policy
π∗ such that π∗ = arg maxπQ(s, a, π), for all
s ∈ S, a ∈ A.

We train towards this policy by the iterative
value update defined by setting

Q(st, at, θ)← rt + max
a∈A

Q(st+1, a, θ)

Where θ is the parameters for our network.

2 Related Works

As the idea of applying reinforcement learn-
ing to the TSCA problem is not new [10],
there has been many projects exploring novel
state and action spaces, yet only a few of the
possible reward functions have been explored.
This is because choosing the best reward
function is an unsolved problem in reinforce-
ment learning, and the best approach in the
past has been trial and error. In Brys et al [1],
the authors compared using delay, squared
delay, and throughput as reward functions for
a RL TSCA, but these reward functions were
more used to compare the differences between
algorithms. Genders and Razavi [5] chose to
use the change in cumulative vehicle delay for
their experiments, a reward function that we
test in this study due to the success of their
model in reducing not only cumulative de-
lay, but increasing throughput and decreasing

queues. Chu et al. [3] used a combination of
two common reward functions for their Multi
Agent RL TSCA, namely a linear combina-
tion of the queue length and the wait time at
each time step. Until this point, there had
not been multi-reward reward functions uti-
lized in the TSCA, and their model proved
to be successful by their metrics, including
queue length and average delays. One of the
more extensive and novel evaluations of re-
ward functions comes from the PhD thesis
of Tantawy [4], where they examine change
in delay, maximizing reduction of cumulative
delay, and minimization/balancing of queue
length. While all of these experiments show
the variety of reward functions, there is no
way to compare the effects of the individual
reward functions compared to one another.

3 Method

3.1 State Space

The state space we use in this experiment is
the Discrete Traffic State Encoding (DTSE)
developed by Genders and Razavi in 2016 [5]
as an efficient way to encode the information
of a controlled intersection in a concise man-
ner. The DTSE works by discretizing the
lanes into cells of length c, giving us l

c
cells,

where l is the length of our lanes. We split the
information of the junction into three parts;
the first for the current traffic signal, the sec-
ond for the presence of vehicles in cells, and
the third for the speed of vehicles in the cell
relative to the speed limit. An example can
be seen in figure 1, but this lacks some clarity
so see section 6.2 for a more in-depth expla-
nation.

2

3.2 Action Space 3 METHOD

Figure 1: DTSE example from Genders,
Razavi 2016

3.2 Action Space

The action space for this experiment is also
taken from Genders and Razavi’s 2016 paper
[5], as it provides a moderate level of free-
dom for our TSCA. This is ideal for this ex-
periment as giving it too much freedom, as
we could by allowing our TSCA to choose
the signal at each time step without forc-
ing any structure on the transitions, increases
the amount of training needed to achieve a
policy that prevents collisions in our junc-
tion at each time step, much less performs
well. However, if we restrict the freedom of
the TSCA too much, then we end up with
something much more akin to today’s stan-
dard timed lights. Finding a perfect medium
is an ongoing effort, however the Genders ac-
tion space is intuitive and easy to implement.
In short, we simply force a short transition
period between any two differing green light
signals. We can think of a four way inter-
section, such as the one used in our exper-
iments, as having only 4 signals. One for
North-South traffic allowed to move forward
through the intersection, and yield on left
turns, one for North-South traffic allowed to
make protected left turns, and two equivalent
signals for East-West traffic. We don’t need
to include red light signals this way, as we
can simply think of them as the green coun-
terparts for the opposing direction. By using
Genders and Razavi’s action space, we force

Figure 2: Action transition map from Gen-
ders, Razavi 2016

each of these 4 signals to interject a tran-
sitional period of yellow lights when chang-
ing from one to another. An example of
this schedule can be seen in figure 2. How-
ever, with our implementation, we add two
all-yellow signals to each direction, as a way
to bridge between from all-green signals from
one direction to a signal in the opposing di-
rection. This gives us an easy way to safely
slow down the traffic, without needing to
learn the dynamics of a traffic system with
the actions space with large amounts of free-
dom.

3.3 Reward Functions

As the topic of this paper’s exploration, we
have 12 reward functions with which we
would have liked to test. The first 6 are
simply each reward function at each time
step, while the latter 6 are the same reward
functions, only altered by subtracting the re-
ward at the current time step from the re-
ward from the previous time step. That
is, our base reward Rt(st, at)) is a func-
tion of only the previous state and action,
whereas our augmented rewards (the lat-
ter 6 of our given rewards) can be written
as R

′
t(st−1, at−1, st, at) = Rt−1(st−1, at−1) −

Rt(st, at). The goal of including both of these
types of rewards is to investigate the presence
or absence of a benefit from using a reward
function that uses more than just one time
step’s worth of information.

3

3.4 Model 3 METHOD

3.3.1 Queue Length

The first of our reward functions is the queue
length. This is one of the simplest and earli-
est metrics used for the TSCA problem with
RL, as it is an intuitive metric to be minimiz-
ing. In order to compute this metric, we sim-
ply take the sum the number of cars stopped
at the light in each lane across all lanes con-
trolled by the TSCA. This is a natural re-
ward function to start with, as minimizing
the amount of cars waiting at the light would
intuitively move traffic through the intersec-
tion.

3.3.2 Linear Delay

Linear delay is another intuitive metric to
use, as it simply measures the amount of time
that each car is delayed in our network. To
compute our values of linear delay, we sum
the waiting time of each loaded vehicle in
the network, such that the vehicle is not yet
through the network and on its arrival lane.
This value gives us our cumulative linear de-
lay, and dividing by the number of applicable
vehicles gives us our average linear delay. See
section 6.1 for notes on the problem with our
implementation during our training window.

3.3.3 Squared Delay

Squared delay is a less explored metric than
linear delay, but there are solid motivations
to using it. Squared delay is computed in
a similar fashion to the linear delay, except
instead of summing the delays of each vehi-
cle, we sum the squares of the delays of each
vehicle. The intuition behind this approach
is to limit the amount of time any individ-
ual driver spends waiting at the traffic light,
even if it comes at a small cost to a number
of other drivers. For example, if a small cross
street has one driver attempting to cross a

busy major street, linear delay would dictate
that the single car on the cross street might
need to wait upwards of 100 seconds in or-
der to merit switching the signals for them
to cross to compensate for the fact that the
large volume of cross traffic will incur a large
penalty. With squared delay, this problem is
lessened, as the single car will quickly incur
a larger penalty relative to what will be in-
curred from the short stop of the cross traf-
fic. Again, see section 6.1 for notes on the
problem with our implementation during our
training window.

3.3.4 Average Arrived Travel Time

Average arrived travel time (AATT) is an-
other reward, which hasn’t been explored in
nearly the same depth as the first two. Typ-
ically used as a metric and not as a reward,
average arrived travel time simply takes the
average time it took for all cars which have ar-
rived at their final destination, to travel from
their starting destination to where they are.
While this is a value that changes with the
size of the network, that is, a network with
edges of length 200 meters will undoubtedly
have a longer average arrived travel time than
that of a network with edge length of 100 me-
ters, it still provides a valuable insight on how
quickly cars are moving through this network.
In our implementation, instead of taking the
average travel time of all arrived cars, we take
the average travel time of the last 100 cars
which arrived at their destination. This is a
more near-sighted reward than the unlimited
AATT, but we implemented it this way for
memory constraints.

3.4 Model

The model used in this exploration is a sim-
ple model comprised of only Linear layers,
each followed by linear rectivation units as

4

4 RESULTS

Figure 3: Architecture of the model used

their associated non-linearity. The architec-
ture can be seen in figure 3. In order to train
the model, we used the smooth L1 loss func-
tion implemented under Pytorch’s functional
module with the RMSProp optimizer with a
learning rate of 2.5 e-4. We used a softmax
exploration policy in order to explore unvis-
ited state action pairs. Furthermore, we uti-
lize an experience replay, which we initialize
with 1000 random actions and their corre-
sponding states from the simulation. This
experience replay has a maximum capacity of
25,000 state, action, reward, and next state
transition tuples.

4 Results

4.1 Scenario

The model and reward functions were trained
and tested using the SUMO environment [7]
with a 4 way intersection where each incom-
ing road has 2 lanes. The leftmost lane for
incoming traffic into the intersection was al-
lowed either a left turn or a straight through
the intersection, and the rightmost lane was
allowed either a right turn or a straight
trough. This intersection and its connections

Figure 4: Intersection and underlying con-
nections used in our simulation

can be seen in figure 4. Each incoming road
had a length of 100 meters and a speed limit
of 25 meters per second. Each training epoch
consists of 2 hours of fairly heavy traffic with
1 car inserted into the simulation every 2 sec-
onds, on average. Furthermore, as this is
work done for a Canadian university, we used
Canadian road laws in that no right hand
turns were allowed under a red light. A sim-
plification that we elected to make with our
environment was to cut out pedestrian or cy-
clist traffic, simplifying the problem to only
include vehicular traffic.

4.2 Qualitative Results

Due to constraints, both time and computa-
tional, we were only able to train using the
first three reward functions out of the 12 to-
tal as well as only being able to train one sin-
gle model, instead of the 5 we had wanted.
This leads to extreme variance in what the
true performance of the models trained using
these reward functions are, and we are aware
of this major issue. However, we were able
to test these three models and measure their
performance across all 12 rewards as well as
measure their throughput. These tests were
done in another heavy traffic environment

5

4.2 Qualitative Results 4 RESULTS

for 40 simulated minutes. For the following
graphs, blue shows the performance of the
model trained using the queue length reward
function, orange shows the model trained us-
ing the average linear delay, and green shows
the model trained using the average squared
delay.

To start, lets closely evaluate the results from
figure 5, which shows the performance of the
trained models evaluated using the average
queue length. In order to understand this
graph, it is important to know that our model
could hold a maximum of up to 102 cars, so
a network with an average queue length of
100 means that the lights never changed from
red. Similarly, a network which never changes
from a full green for one direction would have
an average queue length of around 50. It
is thus very evident that our squared delay
agent was unable to change the lights from
red to green for the first 100 or so epochs. I
believe this in large part was due to the is-
sue with the implementation, as the model
was receiving a huge reward for flickering the
green light and immediately changing back to
the other direction. However, it can be seen
that the queue length model consistently per-
formed slightly better than leaving the green
on for one direction the whole time, and all
models seemed to be improving towards the
end of the training. Again, with more train-
ing, we may have seen these become actually
competitive with each other.

Next, we can look at the results by comparing
the average linear and squared delays. Due
to the implementation error, the squared de-
lay is simply the square of the linear delay,
which it should not be, as the times should
not reset by moving one space, leaving many
of the squares to avoid exploding in value. In
figure 6, we see that again the queue length
model outperformed the other two models,
and we see that the squared model was un-
able to learn anything significant about the
task to lower its average delay.

Figure 5: Performance of models tested on
average queue length

Figure 6: Performance of models tested on
average linear delay

6

6 APPENDIX

For the full list of figures, see the figures folder
in the code repository in section 6.3.

5 Conclusion

In conclusion, we arrived at an unsatisfactory
and insufficient conclusion given the flaws in
the implementation before we detected them,
our limited training window, and our limited
computational power. As a solo project, the
only computational tool available was a Mac-
Book Pro, and the training window ended up
being only about 24 hours once I had finished
the implementation of all the parts of the
code. However, despite all these shortcom-
ings, we see that queue length out performed
the mis-implemented delay rewards that we
were able to train.

6 Appendix

6.1 Notable Error

Due to an error in our code, we utilized
a function from our simulator to compute
the waiting times for the delays incorrectly.
Thus, our waiting time per car only repre-
sents the time that car spent at a stop, not
waiting at the light. For example, if a car is
stopped a position 5 in the queue and accu-
mulates 10 seconds of delay, if the light lets
through even one of the cars in front of it
in the queue, since the car will move forward
one position, this resets the delay we measure
back to 0, even though the vehicle is still de-
layed at the light. Due to time constraints,
we were unable to rectify this error in our
tests, only in our code. This is a major issue
in our testing, as it does not accurately mea-
sure what we had hoped to measure and we
believe it to be a major contributing factor to

the dismal results. Even after this report is
submitted, we will continue testing, and up-
date our code repository with our results, as
we ourselves are interested in achieving the
correct information, even if there is no use
for this report.

6.2 DTSE Explanation

We initialize our DTSE to be an array of zeros
of shape

DTSE(St) = [|A|, |L|, 2 ∗ `
c
]

where A is our action space, L is the lanes
controlled by the TSCA, ` is the length of
our lanes, and c is the cell length. Let us
use our four action, action space. Let these
actions be {NSG, NSLG, EWG, EWLG}.
Suppose the current traffic signal is NSLG,
the second of the four options. Then, our
DTSE has zeros in all channels except the
second channel. That is, assuming our four
actions are zero-indexed, DTSE[i] = 0 for
all i 6= 1. Next, assume there is only one
car in the network, one the fourth lane that
our TSCA controls, going 20 miles per hour
in a 45 mile per hour zone. Assume this car
is also 75 meters from the junction, the lane
is 100 meters long, and we have cell sizes of
length 10 meters. Then, DTSE[1, 3, 7] = 1,
since there is a car present in the cell, and
DTSE[1, 3, 10 + 7] = 20

45
. This addition of

10 is simply a way to avoid adding another
dimension. Instead of having a four dimen-
sional DTSE with a final dimension of size 2,
one value for position and one for speed pro-
portion, we can compress it into one dimen-
sion. We can continue updating the DTSE
with new cars in new positions until we have
covered all vehicles.

7

6.3 Code REFERENCES

6.3 Code

All the code written for the project
can be found at https://github.com/

dkristensen/Comp_767_Final. Please note
that in order to run it, you need the SUMO
package downloaded, as well as the TRACI
tools found in the full download.

References

[1] Brys, T., Pham, T., and Taylor,
M. Distributed learning and multi-
objectivity in traffic light control. Con-
nection Science 26 (01 2014).

[2] CEBR. The future economic and en-
vironmental costs of gridlock in 2030.
Tech. rep., INRIX, July 2014.

[3] Chu, T., Wang, J., Codecà, L.,
and Li, Z. Multi-agent deep rein-
forcement learning for large-scale traf-
fic signal control. CoRR abs/1903.04527
(2019).

[4] El-Tantawy, S., and Abdulhai,
B. Towards multi-agent reinforce-
ment learning for integrated network of
optimal traffic controllers (marlin-otc).
Transportation Letters 2, 2 (2010), 89–
110.

[5] Genders, W., and Razavi, S.
Using a deep reinforcement learning
agent for traffic signal control. CoRR
abs/1611.01142 (2016).

[6] Heess, N., TB, D., Sriram, S., Lem-
mon, J., Merel, J., Wayne, G.,
Tassa, Y., Erez, T., Wang, Z., Es-
lami, S. M. A., Riedmiller, M. A.,
and Silver, D. Emergence of loco-
motion behaviours in rich environments.
CoRR abs/1707.02286 (2017).

[7] Lopez, P. A., Behrisch, M.,
Bieker-Walz, L., Erdmann, J.,
Flötteröd, Y.-P., Hilbrich, R.,
Lücken, L., Rummel, J., Wag-
ner, P., and Wießner, E. Mi-
croscopic traffic simulation using sumo.
In The 21st IEEE International Confer-
ence on Intelligent Transportation Sys-
tems (2018), IEEE.

[8] Mnih, V., Kavukcuoglu, K., Sil-
ver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fid-
jeland, A. K., Ostrovski, G., Pe-
tersen, S., Beattie, C., Sadik,
A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S.,
and Hassabis, D. Human-level con-
trol through deep reinforcement learn-
ing. Nature 518 (02 2015), 529 EP –.

[9] Robertson, D. I., and Brether-
ton, R. D. Optimizing networks of
traffic signals in real time-the scoot
method. IEEE Transactions on Vehic-
ular Technology 40 (Feb 1991), 11–15.

[10] Thorpe, T. L., and Anderson,
C. W. Traffic light control using sarsa
with three state representations. Tech.
rep., IBM Corporation, 1996.

[11] Watkins, C., and Dayan, P. Techni-
cal note: Q-learning. 279–292.

8

https://github.com/dkristensen/Comp_767_Final
https://github.com/dkristensen/Comp_767_Final

	Introduction
	Related Works
	Method
	State Space
	Action Space
	Reward Functions
	Queue Length
	Linear Delay
	Squared Delay
	Average Arrived Travel Time

	Model

	Results
	Scenario
	Qualitative Results

	Conclusion
	Appendix
	Notable Error
	DTSE Explanation
	Code

