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You live in California with a house that has a sensitive burglar
alarm with two neighbors, Mary and John. You go on a trip out of
state but while away, you get a call from neighbor John. You want
to know what the probability that John is calling because of a
burglary instead of an earthquake, but you don’t know how to go
about computing this.

What do you do?



You can create a Bayesian network and perform probabilistic

inference on your model
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Figure 1: Simple Bayesian network for the example




What is a Bayesian Network?

Simply put, a Bayesian network represents your beliefs on
dependencies between variables

Create probabilistic models of events in order to predict outcomes



How does a Bayesian network work?

Each edge in our belief network represents a dependency that we
think exists

For independent random variables, we can break down our joint
probability equation into a product of simpler conditional
probabilities.



Factoring Example
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D-Separation

D-separation is an algorithm used to determine independence
between variables

> Makes use of the three possible connections in a Bayesian
network

» "Explains Away" outcomes based on observed variables



Connections

GOSN

» A,C dependent

» Observing B
renders A, C
independent

Convergent

» AC
independent

» Observing B
renders A, C
dependent

Divergent

» A,C dependent

» Observing B
renders A, C
independent



Probabilistic Inference

Split your variables into one of three sets: Query, Evidence, Hidden.

Probabilistic inference is a four step process for a Bayesian network

1.

Set the evidence variables to be consistent with the inference
task

2. Marginalize over all the hidden variables

3. Compute the probability for each query variable taking on

each possible value in it's domain

Normalize the computed probabilities to sum to 1 to be a
proper probability distribution



Probabilistic Inference: Example

From our example at the start, what is the probability that John is
calling because of a burglary instead of an earthquake?
First we need to break our random variables into our three sets

» Query: Since we want to know the probability that John is
calling because of a burglary, we let J be our query variable

» Evidence: Since we want to know what the probability is that
there was a burglary and not an earthquake, we let both B
and E be our evidence variables

» Hidden: This leaves both Mary and Alarm as that random
variables not in the sets above, so A and M become our
hidden variables to marginalize over



Probabilistic Inference: Example

To compute this, we now have
P(j | —e, b) xx P(j, —e, b)
= ZZ P(A, M., j, b, —e)
= P(—e)P ZPA|ﬁeb PG A)Y  P(M|A)
M

= (0.998)(0.001) [(0.94)(0.9) + (0.06)(0.05)]
= 0.000847302

When we compute P(—j | —e, b) and normalize the two, we find
that the probability of John calling because of a burglary and not
an earthquake is 0.849



You work as a security guard in a top-secret underground lab. You
notice that some days, researchers come in with umbrellas and
some days they don't. Most of the days, if they bring an umbrella,
it is dripping wet. You want to know what the probability that it
was raining today given your observations for the past week.

What do you do?



Dyanmic Bayesian Networks

Dynamic Bayesian networks (DBNs) are useful ways to
probabilistically model successive events that can cause different

actions

For each time t, we let X; be the set of hidden variables for t, and
we let E; be the set of evidence variables for time t.



Transmission model vs Emission model

Transmission Model

» Specifies P(X¢ | Xo:t—1)

» Markov Assumption: P(X: |

XO:t—l) = P(Xt | Xt—l)

0.6 0.3
T= [0.4 0.7]

Emission Model
» Specifies P(E; | Xo:t, Eo:t—1)
» Sensor Markov Assumption:

P(E: | Xo:t, Eo:e-1) = P(E: |
Xt)

0.7 0.15
E= [0.3 0.85]



Inference in the Dynamic case

To perform inference in for a DBN, we have to use different
methods than for the static case.

We use a method known as filtering, where we want to know the
state at time t given the evidence up to and including time t



Filtering: Overview

We use Bayes' Rule extensively when computing our probability,
since

P(Xt | El:t) 0.8 P(Et ‘ Xt)P(Xt ‘ El:t—l)

Furthermore, we make use of marginalizing probabilities to break
up more complicated problems, such as

P(Xt | El:t—l) = Z P(Xtaxt—l | El:t—l)
Xi—1
We get that for time t,

P(X: | Eve) = P(Ee | Xe) > [P(Xe | Xe1)P(Xe1 | Evie1)]
Xi—1



Conclusion

Using this, we can ask complicated questions about our system,
like what is the probability of it raining today, given the past four
days, we noticed an umbrella, no umbrella, no umbrella, and no
umbrella?

This is the main use for dynamic Bayesian networks, since they
have a large amount of probabilistic expression power given the
relatively low amount of work it takes to create the model
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