Deep Learning to Extract Laboratory Mouse
Ultrasonic Vocalizations from Scalograms

Adam A. Smith
Department of Mathematics and Computer Science
University of Puget Sound
Tacoma, Washington 98416
Email: aasmith@pugetsound.edu

Abstract—We tested two techniques that can assist in the
automatic extraction and analysis of laboratory mouse ultrasonic
vocalizations. First, we substituted a Morlet-wavelet-based scalo-
gram in place of the commonly used Fourier-based spectrogram.
The frequencies in a scalogram are logarithmically scaled, which
likely makes it better model a mouse’s pitch perception based
on the structure of its inner ear. Works that use the linear spec-
trogram are more likely to overemphasize frequency change at
high frequencies, and so might misclassify calls when partitioning
them according to frequency modulation. We showed that labo-
ratory mice do indeed modulate their calls more when making
high-frequency calls, which we would expect if they perceive pitch
logarithmically. Secondly, we used ‘“‘deep” convolutional neural
networks to automatically identify calls within the scalogram.
A convolutional neural network performs much like the animal
visual cortex, and has enjoyed recent success in computer-vision
and related problems. We compared the convolutional network
to a conventional fully-connected neural network and the Song
filter used by recent papers, and found that our convolutional
network identifies calls with greater precision and recall.

I. INTRODUCTION

Laboratory mice (Mus musculus) are one of the most
common animal models used in medical research. This work
focuses on the automatic extraction of their ultrasonic vocal-
izations (USVs) without immediate human supervision. It is
commonly thought that a mouse’s vocalizations provide a win-
dow into the animal’s affective state. For scientists who study
human mental illness (e.g. schizophrenia, autism spectrum
disorder, traumatic brain injury), a better understanding of a
mouse’s vocalizations may be crucial to understanding mouse
models. However, obtaining and using this data has been
challenging. Recording mice and extracting their vocalizations
is very expensive and labor-intensive, and requires specialized
equipment. It can take a human technician hours (if not days)
to process mere minutes of recording. This paper makes two
primary contributions. First, we replace the traditional Fourier
transform with Morlet wavelets, in order to address likely
problems related to mouse pitch perception. Second, we use
deep-learning convolutional neural networks to automatically
extract the vocalizations from a sound file with minimal human
oversight.

The characteristics of vocalizations emitted by a mouse are
dependent on several factors [1]. USVs vary in the presence of
neurological disorders, including conditions that model autism

Drew Kristensen
Department of Mathematics and Computer Science
University of Puget Sound
Tacoma, Washington 98416
Email: dkristensen @pugetsound.edu

spectrum disorder [2]-[4], schizophrenia [4], and Alzheimer’s
disease [5]. USVs also differ depending on social condition
[6], [7] or the odors of other mice [8], [9]. Mice exploring
novel environments emit vocalizations that vary by the envi-
ronment being explored [10]. Further, exposure to drugs can
influence USVs, including drugs of abuse [11], [12]. Of all
the qualities of laboratory mouse vocalizations, the number
of calls and the frequency modulation within those calls are
likely to be among the most important attributes [13], [14].

Many software tools already exist in order to facilitate
working with bioacoustic data, but most require significant
human oversight. Commonly used programs include Praat,
Avisoft-SASLab Pro, and MUPET. These all work with spec-
trograms: the result of a windowed Fourier transform of a
sound file. A sample spectrogram can be seen in Figure 1la.
Praat [15] is an open-source program that has excellent support
for spectrogram transforms, but it is geared toward analyzing
human speech. Avisoft-SASLab Pro [16] is another stand-
alone program that is commonly used in mouse labs. However
its algorithms are proprietary and their precise details are not
published. MUPET [17] is a recent open-source library for
MATLAB, and it is made to act more autonomously than the
other programs. It relies on the Song filter (see below), which
may have difficulties identifying the precise frequency of a
call.

It is important that any tool used to analyze mouse vocaliza-
tions takes into account our understanding of a mouse’s pitch
perception (as much as we can understand it), to introduce
as few artifacts as possible. For example, calls are often
partitioned based on their observed frequency modulation (e.g.
“flat calls”, “upward calls”, etc.) [3], [18]. In general, pitch
perception in mammals is thought to operate on a roughly
logarithmic scale [19], [20].! That is, each octave is a doubling
of frequency. This is due in part to the logarithmic distribution
of lengths of stereocilia (sensing hairs) in the inner ear. While
this fact has long been known in humans, only more recently
have Miiller et al. [20] confirmed it specifically for laboratory

'A demonstration of this phenomenon can be found at https:/github.com/
adam-a-smith/log-linear-scale-mp3s. Here, two sound files contain ten tones,
increasing from 200 Hz to 2 kHz. One increases linearly and the other
logarithmically. The linear one seems to increase quickly at first and then
levels out, whereas the logarithmic one seems to increase by even steps.

120 kHz
_ /

2 90 kHz— " ; .

g] | h !

o . W "'""\w

LO'EJ 60 kHz — .

30 kHz T T T T | T T T T
0ms 250 ms 500 ms
Time

(a) Spectrogram

120 kHz —- -
-, 90 kHz— . i, ,.ﬂ
(8] - p G i
< Ji
‘é’ 60 kHz— N Y
3 i
L i

30 kHz T T T T T T T T T
0ms 250 ms 500 ms
Time

(b) Scalogram

Fig. 1. A spectrogram and a scalogram of the same sequence of FVB mouse calls. In the spectrogram, the middle call appears to be much more modulated
than the mice probably perceive, with respect to the other two large calls. The scalogram likely shows a more accurate comparison, due to the physiology of

a mouse’s inner ear.

mice. Thus, we argue that a call’s modulation should be judged
relative to the call’s base frequency: an increase of 10 kHz in
a 40-kHz call should be treated identically to an increase of
20 kHz in an 80-kHz call. Use of a linear frequency scale
(such as that used in the spectrograms of the above programs)
introduces an inherent bias, since it might cause us to think of
the second call as having a greater apparent modulation than
the first. This is at odds with what we know about mouse
anatomy, and will make high-frequency calls appear to be
more modulated than they are likely perceived to be. This
could result in many misclassified calls, leading to incorrect
conclusions!

II. BACKGROUND

Here we detail the mathematical tools we use in this paper.

The Song Filter

The Song filter is a tool to identify times containing a bona
fide call [21]. It is used by MUPET. Since non-vocal noise
most often has a wider frequency range than a vocal call, the
filter works by dividing the maximum spectral component at
each time by the sum of that time’s other spectral components:

maxfeF Dtyf
song(t) = ———.
0 ZfeF Dy y

Here ¢t is a time, F' is the set of all frequencies in the
spectrogram, and D ; is the spectrogram value at time ¢ and
frequency f. If this ratio is above a threshold defined during
training, time ¢ is assumed to contain a call. This simple filter
works well to identify times with calls, but it was not made
to identify the exact frequencies of a call.

(D

Scalograms vs. Spectrograms

Many biologists employing laboratory mice have continued
to use the windowed Fourier transform and its resulting
spectrograms, even as new tools have been developed. This is
due in part to the spectrogram being well suited to the mouse’s
narrow-band, whistle-like vocalizations. A spectrogram creates
an immediately understandable image of a mouse’s calls, in
which start and stop times, durations, and frequency modu-
lation are all easily apparent. We believe that using a Mor-
let wavelet transform instead would keep the spectrogram’s

Fig. 2. A complex Morlet wavelet. The solid line shows the real component,
while the dotted line is the imaginary component. Using a complex-valued
wavelet maintains high convolution values when the signal and the wavelet
have similar frequencies but are out of phase.

advantages, while correcting some of its shortcomings. The
wavelet’s analog to a spectrogram is called a scalogram. The
two are compared in Figure 1.

A complex Morlet wavelet (shown in Figure 2) is deter-
mined by the formula:

1 2

— . T
VT

This is a Gaussian envelope function multiplied by a complex
exponential. 7" is the time-decay parameter that determines the
width of the Gaussian, which affects the relative importance
of the side oscillations. F, is the central wavelength being
investigated. The value ¢ is the time, e is Euler’s constant
(~2.71828) and i is v/—1. By working in complex space, it
is able to detect waveforms even when they are out of phase
with the wavelet. The real and imaginary components of the
wavelet are defined as follows:

. e27r7,FCt)

U(t, T, F.) = 2)

1 2
Ug(t,T,F,) = —-e T - cos(2miF.t), (3)
VT
. P
Ui (t,T,F,) = —— - ¢~ - sin(2miF,t). @)

2

These consist of a cosine and sine respectively with wave-
length F, multiplied by the same Gaussian envelope function
as above.

25 mPa

Relative Pressure

2ms

1ms
Time

Fig. 3. A Morlet wavelet transform of high-quality (250 kHz) audio data. Because of the wavelet’s symmetry, the convolution operation is essentially a
cross-correlation. For clarity, the imaginary component of the wavelet is not shown.

The wavelet transform convolves wavelets of different fre-
quencies and offsets with the original signal, as shown in
Figure 3. Due to the Morlet wavelet’s symmetry, its output
is identical to cross-correlation. The result has both real and
imaginary components, but by taking the magnitude of the
result (the square root of the real portion squared plus the
imaginary portion squared), we obtain the scalogram that is
qualitatively similar to the well-known spectrogram.

We believe that the wavelet transform offers these three
advantages for analyzing mouse vocalizations:

o A wavelet transform results in a scalogram in which
the frequencies are logarithmically scaled. This almost
certainly models a mouse’s pitch perception better than
the linearly scaled frequencies of the Fourier transform,
for the reasons detailed above. A scalogram will not have
the inherent linear bias of a spectrogram, and should
better represent our best guess of what a mouse actually
hears. As a useful side effect, overtone “calls” in a
scalogram appear to have the same shape as their base
calls, and the first one will be shifted up by exactly one
octave. When using spectrograms, overtones can appear
distorted and might be less recognizable.

« Using wavelets allows us to keep the balance between
time precision and frequency precision similar across
frequencies. The Heisenberg uncertainty principle states
that there is an inherent tradeoff between precision in
time and precision in frequency when analyzing a signal
[22]. In a wavelet transform, the wavelet is scaled so that
its width shrinks as the frequency increases. However,
in a windowed Fourier transform the window size must
remain constant at every frequency. This means that
more wavelengths are allowed into the window at higher
frequencies, resulting in a different balance of time and
frequency precisions. This one-size-fits-all approach can
result in higher or lower frequencies appearing more “out
of focus” in a spectrogram. Fix one, and the other blurs.
However a wavelet transform adjusts its window size au-
tomatically depending on the frequency being analyzed.
A wavelength half the length of another results in a
window half the length. This keeps the time/frequency
tradeoff more consistent between frequencies.

« Finally, wavelets are ideal because they are intuitive,
and the resulting scalograms look very much like
spectrograms. Although the mathematics behind efficient
wavelet transformation are very complicated [22], the
basic idea behind the transform is quite simple: it is
effectively a cross-correlation with a complex sinusoid
multiplied by a Gaussian envelope function. Since the
output looks much like a spectrogram, mouse biologists
can keep their sense of intuition as they figure out the
importance behind USVs.

Convolutional Neural Networks

Convolutional neural networks (CNNs) are a subclass of
neural networks that excel at finding patterns within visual
data, part of the “deep learning” revolution that has yielded
many recent advances [23]. CNNs’ first big success was in
reading handwritten numbers—classifying a scanned character
as one of the ten digits [24], [25]. They have since found use
in many problems, both visual and non-visual. These include
classifying images [26], analyzing video [27], discovering new
drugs [28], analyzing natural language [29], and directing self-
driving cars [30]. Perhaps most famously, Google’s AlphaGo
used CNNs in order to find meaningful patterns of pieces on
the go board, allowing it to outplay some of the most skilled
human players in the world [31].

Traditional neural networks are a mainstay of machine-
learning research, that were inspired by natural brains. They
consist of several layers of individual neurons, each of which
calculates an activation function (e.g. a sigmoid) from the
weighted sum of several inputs, and outputs the results to the
neurons in the next layer. The final output can be trained to
perform basic tasks like classification, using techniques such
as backpropagation [32] that set individual parameters and
weights for each neuron based on labeled training data. Until
recently, it was thought that only two layers were enough
to adequately model any function. Although this is true in
principle [33], recent advances have showed that more layers
of more specialized types (i.e. a “deep” network) can learn
specific functions more quickly and accurately [23].

In a CNN, some of the neuron layers mimic cells found
in the animal visual cortex. In the visual cortex, cells focus
on limited, overlapping regions of the animal’s field of view,

NN

g

Second Convolutional Layer

First Convolutional Layer

Input Data

Fig. 4. Two convolutional layers of a convolutional neural network. Here
a 7 x 7 x 1 input is convoluted (an inner product) with two 3 X 3 x 1
kernels, making the first layer 5 x 5 X 2. The values are then sent to a second
convolutional layer with four 3 x 3 X 2 kernels, so the resulting layer is 3 X
3 x 4. The 36 values of the second layer may be sent to another convolutional
layer, or perhaps flattened and sent to a traditional fully connected layer.

called receptive fields, and activate if some primitive shape is
apparent therein (e.g. a horizontal line, a particular curve, etc.)
[34]. The outputs of this first line of neurons are transmitted
to another group of neurons which can then detect higher-
level patterns, and those outputs can be transmitted to still
another group, so that the whole visual cortex is able to quickly
identify probable objects in the animal’s environment.

A CNN works in a similar way, as illustrated in Figure 4.
Here, a kernel is analogous to a group of cells detecting the
same pattern in different regions of the input. A kernel is
a three-dimensional tensor of weight values that is keyed to
some particular primitive pattern. (The third dimension can be
used for multiple inputs, such as the hue, saturation, and value
of a color image.) By sliding the kernel against the input and
calculating the inner (dot) product at each point, we can find
the locations of the pattern within the input. Multiple kernels at
each level are used to detect multiple patterns. Thus, the three-
dimensional output of a convolutional level can be defined as:

W—-1H-1D-1

Ozy,z = bz + Z Z Z (px+i,y+j,k: 'wi,j,k,z)- (5)

i=0 j=0 k=0

In this formula o, . is the output of a layer at position
(x,y, 2), while py; 4 is the input from the previous layer
or the original data at position (x + 14,y + j, k). Each kernel in
this layer has the same size W x H x D. The value w; j 1 . is
the weight of kernel z at position (3, j, k), while b, is a bias
factor for kernel z. The values of the w and b parameters are
set during training, so that each kernel responds to a particular
pattern. There are often two or more adjacent convolutional
layers in the network. Much like in the animal visual cortex,
each subsequent layer is trained to detect more abstract and
high-level patterns.

The width and height of the layers tend to decrease the
further one gets into the network. To counter this, the input
to a layer is sometimes padded with Os around the outside.
More complicated convolutional layers might also make use

Pooling Layer

Input Data

Fig. 5. A pooling layer in a neural network, used to downsample the data.
Here the pooling layer has the same depth as its input. Each value in the
3 X 3 x 2 pooling layer is the maximum value of the corresponding 3 x 3
square in the 7 X 7 X 2 input layer. The stride of 2 X 2 means that adjacent
values in the pooling layer are derived from 3 X 3 squares that are offset by
2 in each direction.

of a stride, which determines the amount of overlap between
adjacent receptive fields. In the equation given above, the stride
is 1 x 1. This means that adjacent values in a convolutional
layer are formed by moving the kernel over by one square,
in both the x and y directions. Increasing the stride decreases
the overlap.

CNNs also commonly make use of pooling layers, in
order to downsample the data for the purpose of preventing
overfitting. As shown in Figure 5, a pooling layer has the same
depth as the input layer, but smaller width and height. Each
value is derived from a region in the input layer—often the
maximum value or average value. For a stride of 1 x 1, W x D
max pooling is defined as:

max

= Datiy+j,z- (6)
(€0, W 1], jE[0,... H—1) © 1 YFDE

Ogx.y,z
However, stride is usually higher. For a stride of W x H or
more, adjacent values in the pooling layer will not be derived
from overlapping regions. The figure illustrates 3 x 3 pooling,
with a stride of 2 x 2. This necessarily downsamples the 7 x
7 x 2 input layer into a 3 x 3 x 2 pooling layer.

Importantly, a convolutional layer cannot learn a function
that could not be learned by two layers of a traditional neural
network of large enough size. However like the visual cortex,
a convolutional layer has a strong bias toward identifying
patterns in adjacent elements of the input data. It is for this
reason that they have been so successful in solving computer-
vision problems. Further, traditional networks often fail to
detect important patterns when they exist in unforeseen places.
Because of the convolutional nature of the kernels, sliding
against the input data while calculating a dot product with the
same parameters, they are able to find familar patterns in novel
locations. This is refered to as “translation invariance”.

Thus, the procedure we are suggesting is shown in Figure 8.
First a Morlet wavelet transform creates a scalogram from the
original audio data. Then, a convolutional neural network can
be used to create a map showing the location of each call.

0.187 ’
-
. .
. o
PRS2
ool
c o % e
IR
© . ERIR P SO
AT
a o asesedsel T %,
SN
. oo 8el s . e
[7)] 25 kHz — Tashse X o .
v SRUN L T
PRAE X AR . .
= e BTN T le t
o, ST e .
© i Som tare SV S .
NS Ve Bte% e
O 0 3 T WS 2,
e et Taut LT, -
RIS I S A .
ST e Bel Bl o S
— BT ST IS s
e B e e e L e
B R I A xR AT
PRRI TN 3 LTRIT 2 el
cateirs * e b SRe WML Tt Nt
— Ree TEN WA BN TT e s emed B
P RO AR X SRR Y
o’ t Heemtetw Teliemm ST 3T .
. ST w TR R o Cwm Swtes o
o3RI S SR T et S UBST N S
— T ot re s s htem el Sudarine o Wett e .o
s e SRS A NS SR L ITIET SN B3
S el e WIS S S SRS, 3 * 3
RIS O A -l A SRR
0 kHz PRI & eSO SOl ok il Yo

Mean Call Frequency
(a) B6/D2 hybrid mice

120 kHz

50 kHz

Call Span

1r=10.430
p=1.95x10""

.
i
s
£ 3
RS
R
.

0 kHz

30 kHz

| |
60 kHz 90 kHz 120 kHz
Mean Call Frequency

(b) FVB mice

Fig. 6. Mean call frequency vs. call span (high frequency minus low frequency) for B6/D2 hybrid mice and for FVB mice. As expected, there is a clear and

significant correlation between the two.

Jr=-0.113
..
lp=157x10 .
$e
.
.
woe
- RNk A
< RE A
-l .
a 9 R IR AL
w -— 1 5 00.0 z‘noo * PR
[- BRI ORI 8 2
=[x RCE AR TR T
© i RIS RAINRENS
O PRI IOMMEY £ €
b3 e, A .
Y et ANS (% Sl o T e
AT DY R A K
4 EAT MR R K WX
B RS I MR A
oouprded o o BIRSE, T Y |
- . Co S o e TR ooy o on
RERNOCIRE L5 X TR NN
sl he o s
. .
B s ety wobes 3 SHigs, o
-t PR o (™
10 . asu i ; paiakil
. T T T T | T
30 kHz 60 kHz 90 kHz

Mean Call Frequency
(a) B6/D2 hybrid mice

120 kHz

2.0
| r=-0.0101
1p=0.2841
_ i
2o T
DT 15—
i i
o
1.0 —
30 kHz 60 kHz 90 kHz

120 kHz
Mean Call Frequency
(b) FVB mice

Fig. 7. Mean call frequency vs. call span ratio (high frequency divided by low frequency) for B6/D2 hybrid mice and for FVB mice. There is significant
negative correlation for the B6/D2 mice, and no significant correlation for the FVB mice. Mean call frequency is graphed on a logarithmic scale.

High Quality
Recording

convolutional
neural network

Morlet wavelet

transform Scalogram

Map of Calls

Fig. 8. Data flow diagram for our suggested call-extraction procedure.

III. EXPERIMENTS

Here we detail the experiments we have done, along with
their results. All audio recordings were downloaded from
MouseTube [35]. We did not conduct any new animal research.

We wrote all our original programs in Python 3.5.

Comparing Call Ratio and Range

If mice do perceive pitch logarithmically, we would expect a
call’s frequency range to increase linearly with the call’s base
frequency. This would be consistent with calls being perceived
as having similar modulation, despite occurring over a range
of frequencies. To find this, we graphed the frequency of
1110 different calls of B6/D2 (C57BL/6J and DBA/2J) hybrid
mice and 399 calls of FVB (FVB/NJ) mice, against the calls’
frequency ranges (high frequency minus low frequency) and

frequency ratios (high frequency divided by low frequency).
All mouse calls were identified by human from audio files,
and a “call” in this case indicates a continuous region of high
value within a spectrogram or scalogram, such as those shown
in Figure 1. Discontinuous regions during the same time period
are considered two separate calls.

For frequency range, we calculated spectrograms of each
audio file using Praat [15], using a Gaussian window of length
2 ms and time step of 0.5 ms, with maximum frequency of
120 kHz and a frequency step size of 1 kHz. After calls
were identified by human, each call’s average frequency was
calculated as a weighted average of all time-frequency pairs
(“pixels”) within that call weighted by coefficient, and the
frequency range was simply the highest frequency present
minus the lowest. We calculated the correlation r between
frequency and range, and calculated the p-value p by assuming
a t distribution. The results are shown in Figure 6.

The process for frequency ratio is similar. In this case we
calculated the scalogram for each audio file, with frequencies
varying over two octaves from 30 kHz to 120 kHz, with 50
voices per octave, a time-decay value of 1 x 107%, and a time
resolution of 0.5 ms. We then calculated dominant frequency

as before, though using a geometric average of frequencies
rather than an arithmetic average (the difference was very
slight). Call ratio is a call’s highest frequency divided by its
lowest frequency, and we calculated r and p as before. The
results are shown in Figure 7.

For both strains we found a highly significant correlation
between frequency and range, adding weight to our hypothesis.
Interestingly, the correlation is negative when comparing fre-
quency and ratio for the B6/D2 mice, though the significance
is not nearly as great as it was in the range comparison. High-
frequency calls simply appear to have very little modulation
in these calls. For the FVB mice, which vocalize at signifi-
cantly higher frequencies, no significant correlation was found
between frequency and ratio.

Evaluating Convolutional Neural Networks

We attempted to construct a convolutional neural network
that would be able to identify calls within fifteen scalograms
created from fifteen ten-second recordings of B6/D2 hybrid
mice (using the same parameters as above). We used Google’s
TensorFlow library [36]. The network we created is able to
answer, for each coefficient (“pixel”) of a scalogram, whether
or not it is part of a call. The input to the neural network is
the 17 x 17 area around the pixel in question, as well as the
normalized logarithm of the pixel’s frequency. Each scalogram
was normalized by taking the logarithm of each value, and then
scaling so that the mean value is O and the greatest value is 1.

To find the CNN’s architecture, we started with a very basic
convolutional layer followed by two traditional fully connected
layers. At this point we manually performed a search, adjusting
one aspect of the network at a time (e.g. number of layers,
number of nodes within a layer, relative position of two
layers) and retesting it, keeping changes resulting in a higher
performing model. To evaluate a network we used leave-one-
out cross-validation, training on fourteen scalograms at a time
and testing on the fifteenth. We used human-labeled data as our
gold standard. During the training process we used AdaGrad
stochastic gradient descent [37] with the learning rate set to
0.1. We trained using 20,000 epochs of 100 labeled pixels from
a scalogram. Each training pixel was chosen randomly from
the training set, and had a 25% chance to be chosen from a
call, 25% from non-call pixels within 2 pixels of a call, 25% to
be from human-identified “false calls” (non-calls of high value
that we thought might be problematic), and 25% from among
all pixels. The convolutional layers use rectified linear units
[23], while the fully connected layers use the more traditional
sigmoid units [33]. Finally, all found calls consisting of fewer
than five adjacent pixels were filtered out.

Our goal was to maximize the “pixelwise” Fy score. This is
the harmonic mean of the precision (fraction of pixels declared
to be parts of calls, that really are) and the recall (fraction of
pixels that are parts of calls that are identified as such). We
also calculated the “timewise” F; score, that only determined
whether a time step contains a call, without trying to locate it
in frequency.

The network we identified is shown in Figure 9. Its per-
formance is shown in Figure 10, along with that of two
control methods. The first control is a traditional two-layer
fully connected neural network. This had 290 inputs: the
flattened 17 x 17 region around a pixel, and the normalized
logarithm of the pixel’s frequency. It had 50 hidden units,
and two output units: one for “part of a call” and the other
for “not part of a call”. (We tried other numbers of hidden
units as well, with less success.) We trained the network in
the same manner we did the CNN. The other control we
tested was the Song filter. Here we used the filter described
in Section II to identify times containing calls, and then all
pixels above a second threshold are determined to be part of
a call. We determined the thresholds by using training data,
picking first the Song threshold and then the pixel threshold
that maximized the pixelwise F; score in the training set. For
both controls, we eliminated all calls with fewer than five
pixels. Our CNN achieved significantly higher F; scores than
both controls using a one-tailed paired Student’s t test, using
both the pixelwise and timewise approaches.

IV. DISCUSSION & CONCLUSION

We used a complex Morlet wavelet transform in order
to produce scalograms of laboratory mouse vocalizations.
Scalograms are intuitively similar to spectrograms, but output
frequency on a logarithmic scale while minimizing artifacts
due to the Heisenberg uncertainty principle. In addition, we
used a deep neural network, including convolutional layers,
to automatically extract the vocalizations from the gener-
ated scalogram. Convolutional layers are especially useful for
classifying visual information, and our CNN extracted the
vocalizations on a pixelwise level with greater precision and
recall than previous methods. However, timewise we only
obtained the best F;. The Song filter obtains better timewise
precision than our CNN (though not significantly), but much
worse recall.

Our program takes more time to calculate a scalogram than
most commerical and open-source programs take to calculate
a spectrogram. However, we do not anticipate this to be a
problem. Firstly, the scalogram can be calculated ahead of
time and saved. Secondly, we made no attempt to parallelize
our computation. Because the convolutions are independent
of each other (given the wavelet and the data) and because
each frequency can be calculated separately, there is ample
opportunity to parallelize the computation and speed it up by
an order of magnitude on modern multi-core computers.

The FVB data is strongly in line with our hypothesis that
a call’s range should correlate with its base frequency, and
thus using a tool with a logarithmic scale should help prevent
erronous conclusions. Surprisingly however, the B6/D2 mean
call frequency has a significant negative correlation between
call frequency and call span ratio, where we expected there
to be no correlation. It may be that this is a genuine pattern:
that these mice simply do not make highly modulated calls at
higher frequencies. Figure 7 seems to confirm this idea. If this

re e

Original Scalogram log
frequency
) '
11x11x32 5x5x32 3x3x64 1x1x128 §’
conv. max pool conv. conv. 4 128 64 Repeat
layer layer layer layer . . 32 ~ call
_u unit unit : 2 unit for ever
unit not call y
layer layer ixel

32 9x9x1 3x3 pool 64 3x3x32 128 3x3x64| o pixel.

kernels, 2x2 stride kernels kernels &

0-padded

17x17 Input — e
\ J/ " J/
Y \
Convolutional/Pooling Layers Fully Connected Layers
- '
- "_—x_‘ [
———
f‘“—v-
™~

Map of Extracted Calls

Fig. 9. Structure of a convolutional neural network, to determine if a single pixel in a scalogram is part of a call. The input is the 17 X 17-pixel area around
the pixel The data goes through multiple convolutional layers with one pooling layer, and then into four traditional fully connected layers. The output is a
single “yes” or “no”. Repeated for every pixel, we generate a map of the calls’ locations.

1.0

i k] ES —
@ 0.8— x '3 g 0.8— = X *
o 4 S i
O * (&
0 0.6 0 0.6
[0} - * * [0] -
2 K]
T 04— = 0.4—
2 E]
& 0.2 £ 02—
0.0 0.0

CNN 2LNN Song
F, Score

CNN 2LNN Song
Precision

CNN 2LNN Song
Recall

(a) Pixelwise Scores

CNN 2LNN Song
Recall

CNN 2LNN Song
F, Score

CNN 2LNN Song
Precision

(b) Timewise Scores

Fig. 10. Pixelwise and timewise F1 score, precision, and recall for our CNN method versus the conventional two-layer neural network and thresholding using
the Song filter. The * indicates that the control method performed significantly differently than our CNN using a one-tailed paired Student’s t test (p < 0.5).

Error bars show the standard error of the mean.

is the case, partitioning calls based on span (as one often does
when employing a spectrogram) could obscure this pattern.

Another curious factor is that where our CNN makes
mistakes, it makes the same mistakes that a human being
would. The vast majority of false-positive pixels are within
one or two pixels of a human-labeled call. Since there is
no accepted hard rule about which pixels are really part of
a call (we relied on our best judgment, and our decisions
are admittedly inconsistent), we believe that this error is
acceptable. Obtaining a higher F; score may thus be very
difficult without developing hard and fast (and arbitrary) rules
about which scalogram elements are part of a call.

Our process to find the best CNN architecture was admit-
tedly ad hoc: it is very likely that better architectures exist.
However, it is difficult to proceed without more high-quality

human-labeled data. Any successful architecture we might
develop is vulnerable to overfitting on our small data set.
Although MouseTube is an excellent source of data, many
mouse biologists are reluctant to place their data online for
others to analyze. Further, labeling this data in order to train
the CNN is time consuming; in our case it took several
days of tedious labor. More data would surely improve the
quality of our CNN, and help mitigate the overfitting issue.
It is important to note that different strains of mice vocalize
differently, and some strains also produce more nonvocal
noise during vocalizations. A high quality extraction algorithm
should be robust to this issue, but it will need a wide variety
of training data to achieve this.

Ultimately, we believe that using these tools will aid in the
quality of the analysis of laboratory mouse USVs. Employing

a scalogram rather than a spectrogram will help avoid mis-
classifying calls based on their frequency modulation. And
using a convolutional neural network to identify the calls will
help save labor, as a computer could do the majority of call
identification with little oversight from a human technician.

ACKNOWLEDGMENT

Thanks to the McCormick Scholar award at the University
of Puget Sound, that funded this research. Past training was
facilitated by Grant T32 DA007262 from the National Institute
on Drug Abuse (NIH). The TensorFlow library is the property
of Google, Inc., and all mouse data is courtesy of MouseTube,
and the laboratories of Jonathan Chabout and Joe Dougherty.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

REFERENCES

G. P. Lahvis, E. Alleva, and M. L. Scattoni, “Translating mouse
vocalizations: prosody and frequency modulation,” Genes, Brain and
Behavior, vol. 10, no. 1, pp. 4-16, 2011.

S. Jamain, K. Radyushkin, K. Hammerschmidt, S. Granon, S. Boretius,
F. Varoqueaux, N. Ramanantsoa, J. Gallego, A. Ronnenberg, D. Winter,
J. Frahm, J. Fischer, T. Bourgeron, H. Ehrenreich, and N. Brose,
“Reduced social interaction and ultrasonic communication in a mouse
model of monogenic heritable autism,” Proceedings of the National
Academy of Sciences, vol. 105, no. 5, pp. 1710-1715, 2008.

M. L. Scattoni, S. U. Gandhy, L. Ricceri, and J. N. Crawley, “Unusual
repertoire of vocalizations in the BTBR T+tf/] mouse model of autism,”
PLoS ONE, vol. 3, no. 8, p. €3067, 08 2008.

M. L. Scattoni, J. Crawley, and L. Ricceri, “Ultrasonic vocalizations: A
tool for behavioural phenotyping of mouse models of neurodevelopmen-
tal disorders,” Neuroscience & Biobehavioral Reviews, vol. 33, no. 4, pp.
508 — 515, 2009, risk Factors for Mental Health: Translational Models
from Behavioral Neuroscience.

C. Menuet, Y. Cazals, C. Gestreau, P. Borghgraef, L. Gielis,
M. Dutschmann, F. Van Leuven, and G. Hilaire, “Age-related impairment
of ultrasonic vocalization in tau. p3011 mice: possible implication for
progressive language disorders,” PloS one, vol. 6, no. 10, p. €25770,
2011.

J. B. Panksepp, K. A. Jochman, J. U. Kim, J. J. Koy, E. D. Wilson,
Q. Chen, C. R. Wilson, and G. P. Lahvis, “Affiliative behavior, ultrasonic
communication and social reward are influenced by genetic variation in
adolescent mice,” PLoS ONE, vol. 2, no. 4, p. €351, 2007.

J. Chabout, P. Serreau, E. Ey, L. Bellier, T. Aubin, T. Bourgeron,
and S. Granon, “Adult male mice emit context-specific ultrasonic
vocalizations that are modulated by prior isolation or group rearing
environment,” PLoS ONE, vol. 7, no. 1, p. €29401, 01 2012.

T. E. Holy and Z. Guo, “Ultrasonic songs of male mice,” PLoS Biol,
vol. 3, no. 12, p. €386, 11 2005.

J. Nyby, C. J. Wysocki, G. Whitney, G. Dizinno, and J. Schneider,
“Elicitation of male mouse (Mus musculus) ultrasonic vocalizations: I.
Urinary cues.” Journal of Comparative and Physiological Psychology,
vol. 93, no. 5, p. 957, 1979.

H.-S. Mun, T. V. Lipina, and J. C. Roder, “Ultrasonic vocalizations in
mice during exploratory behavior are context-dependent,” Frontiers in
behavioral neuroscience, vol. 9, 2015.

I. Branchi, P. Campolongo, and E. Alleva, “Scopolamine effects on
ultrasonic vocalization emission and behavior in the neonatal mouse,”
Behavioural Brain Research, vol. 151, no. 12, pp. 9 — 16, 2004.

H. Wang, S. Liang, J. Burgdorf, J. Wess, and J. Yeomans, “Ultrasonic
vocalizations induced by sex and amphetamine in M2, M4, M5 mus-
carinic and D2 dopamine receptor knockout mice,” PLoS ONE, vol. 3,
no. 4, p. €1893, 04 2008.

L. A. Holmstrom, L. B. Eeuwes, P. D. Roberts, and C. V. Portfors,
“Efficient encoding of vocalizations in the auditory midbrain,” The
Journal of Neuroscience, vol. 30, no. 3, pp. 802-819, 2010.

E. G. Neilans, D. P. Holfoth, K. E. Radziwon, C. V. Portfors, and
M. L. Dent, “Discrimination of ultrasonic vocalizations by CBA/Cal
mice (Mus musculus) is related to spectrotemporal dissimilarity of
vocalizations,” PLoS ONE, vol. 9, no. 1, p. 85405, 01 2014.

P. Boersma and D. Weenink, “Praat: doing phonetics by computer
(version 6.0.29),” May 2017.

[16]

(17]

[18]

[19]

[20]

[21]

[22]
(23]

[24]

[25]

[26]

(27]

[28]

[29]

[30]

(31]

[32]
(33]

[34]

(35]

(36]

[37]

R. Specht, Avisoft-SASLab Pro (Version 5.2.10), Avisoft Bioacoustics,
Berlin, Germany, June 2017.

M. Van Segbroeck, A. T. Knoll, P. Levitt, and S. Narayanan, “Mupet-
mouse ultrasonic profile extraction: A signal processing tool for rapid
and unsupervised analysis of ultrasonic vocalizations,” Neuron, vol. 94,
no. 3, pp. 465-485, 2017.

J. M. Grimsley, J. J. Monaghan, and J. J. Wenstrup, “Development of
social vocalizations in mice,” PloS one, vol. 6, no. 3, p. 17460, 2011.
V. B. Deecke and V. M. Janik, “Automated categorization of bioacoustic
signals: Avoiding perceptual pitfalls,” The Journal of the Acoustical
Society of America, vol. 119, no. 1, pp. 645-653, 2006.

M. Miiller, K. von Hiinerbein, S. Hoidis, and J. W. Smolders, “A
physiological placefrequency map of the cochlea in the cba/j mouse,”
Hearing Research, vol. 202, no. 12, pp. 63 — 73, 2005.

N. Y. Song, J. Nicon, B. Min, R. C. C. Cheung, M. A. Amin, and
H. Yan, “Noise filtering and occurrence identification of mouse ultra-
sonic vocalization call,” in 2013 International Conference on Machine
Learning and Cybernetics, vol. 03, July 2013, pp. 1218-1223.

G. Kaiser, A friendly guide to wavelets. Boston: Birkhiduser, 1994.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

Y. LeCun, L. Jackel, B. Boser, J. Denker, H. Graf, I. Guyon, D. Hen-
derson, R. Howard, and W. Hubbard, “Handwritten digit recognition:
Applications of neural network chips and automatic learning,” IEEE
Communications Magazine, vol. 27, no. 11, pp. 41-46, 1989.

Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
'W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural computation, vol. 1, no. 4, pp. 541-551,
1989.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural Infor-
mation Processing Systems 25, F. Pereira, C. J. C. Burges, L. Bottou, and
K. Q. Weinberger, Eds. Curran Associates, Inc., 2012, pp. 1097-1105.
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-scale video classification with convolutional neural
networks,” in Proceedings of the IEEE conference on Computer Vision
and Pattern Recognition, 2014, pp. 1725-1732.

I. Wallach, M. Dzamba, and A. Heifets, “Atomnet: a deep convolutional
neural network for bioactivity prediction in structure-based drug discov-
ery,” arXiv preprint arXiv:1510.02855, 2015.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of Machine Learning Research, vol. 12, no. Aug, pp. 2493-2537, 2011.
M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316,
2016.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, 1. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural networks
and tree search,” Nature, vol. 529, no. 7587, pp. 484-489, 2016.

D. E. Rumelhart, J. L. McClelland, P. R. Group et al., Parallel distributed
processing. MIT press Cambridge, MA, USA:, 1986, vol. 1.
T. M. Mitchell, Machine Learning. McGraw-Hill
ence/Engineering/Math, 1997.

D. H. Hubel and T. N. Wiesel, “Receptive fields and functional archi-
tecture of monkey striate cortex,” The Journal of physiology, vol. 195,
no. 1, pp. 215-243, 1968.

N. Torquet, F. De Chaumont, P. Faure, T. Bourgeron, and E. Ey,
“mousetube—a database to collaboratively unravel mouse ultrasonic
communication,” F1000Research, vol. 5, 2016.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org.

J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, no. Jul, pp. 2121-2159, 2011.

Sci-

